13 research outputs found

    Gene expression for simulation of biological tissue

    Full text link
    BioDynaMo is a biological processes simulator developed by an international community of researchers and software engineers working closely with neuroscientists. The authors have been working on gene expression, i.e. the process by which the heritable information in a gene - the sequence of DNA base pairs - is made into a functional gene product, such as protein or RNA. Typically, gene regulatory models employ either statistical or analytical approaches, being the former already well understood and broadly used. In this paper, we utilize analytical approaches representing the regulatory networks by means of differential equations, such as Euler and Runge-Kutta methods. The two solutions are implemented and have been submitted for inclusion in the BioDynaMo project and are compared for accuracy and performance

    On M2M Micropayments : A Case Study of Electric Autonomous Vehicles

    Get PDF
    The proliferation of electric vehicles has spurred the research interest in technologies associated with it, for instance, batteries, and charging mechanisms. Moreover, the recent advancements in autonomous cars also encourage the enabling technologies to integrate and provide holistic applications. To this end, one key requirement for electric vehicles is to have an efficient, secure, and scalable infrastructure and framework for charging, billing, and auditing. However, the current manual charging systems for EVs may not be applicable to the autonomous cars that demand new, automatic, secure, efficient, and scalable billing and auditing mechanism. Owing to the distributed systems such as blockchain technology, in this paper, we propose a new charging and billing mechanism for electric vehicles that charge their batteries in a charging-on-the-move fashion. To meet the requirements of billing in electric vehicles, we leverage distributed ledger technology (DLT), a distributed peer-to-peer technology for micro-transactions. Our proof-of-concept implementation of the billing framework demonstrates the feasibility of such system in electric vehicles. It is also worth noting that the solution can easily be extended to the electric autonomous cars (EACs)

    Teaching Programming and Design-by-Contract

    Get PDF
    This paper summarizes the experience of teaching an introductory course to programming by using a correctness by construction approach at Innopolis University, Russian Federation. In this paper we claim that division in beginner and advanced groups improves the learning outcomes, present the discussion and the data that support the claim.Comment: 21th International Conference on Interactive Collaborative Learnin

    Microservices: How To Make Your Application Scale

    Get PDF
    International audienceThe microservice architecture is a style inspired by service-oriented computing that has recently started gaining popularity and that promises to change the way in which software is perceived, conceived and designed. In this paper, we describe the main features of microservices and highlight how these features improve scalability

    Dagestan blunt-nosed viper, Macrovipera lebetina obtusa (Dwigubsky, 1832), venom. Venomics, antivenomics, and neutralization assays of the lethal and toxic venom activities by anti-Macrovipera lebetina turanica and anti-Vipera berus berus antivenoms

    Get PDF
    10 páginas 2 figuras, 3 tablasWe have applied a combination of venomics, in vivo neutralization assays, and in vitro third-generation antivenomics analysis to assess the preclinical efficacy of the monospecific anti-Macrovipera lebetina turanica (anti-Mlt) antivenom manufactured by Uzbiopharm® (Uzbekistan) and the monospecific anti-Vipera berus berus antivenom from Microgen® (Russia) against the venom of Dagestan blunt-nosed viper, Macrovipera lebetina obtusa (Mlo). Despite their low content of homologous (anti-Mlt, 5-10%) or para-specific (anti-Vbb, 4-9%) F(ab')2 antibody fragments against M. l. obtusa venom toxins, both antivenoms efficiently recognized most components of the complex venom proteome's arsenal, which is made up of toxins derived from 11 different gene families and neutralized, albeit at different doses, key toxic effects of M. l. obtusa venom, i.e., in vivo lethal and hemorrhagic effects in a murine model, and in vitro phospholipase A2, proteolytic and coagulant activities. The calculated lethality neutralization potencies for Uzbiopharm® anti-Mlt and anti-Vbb Microgen® antivenoms were 1.46 and 1.77 mg/mL, indicating that 1 mL of Uzbiopharm® and Microgen® antivenoms may protect mice from 41 to 50 LD50s of Mlo venom, respectively. The remarkable degree of conservation of immunogenic determinants between species of the clades of European and Oriental viper, which evolved geographically segregated since the early Miocene, suggests an eventual window of opportunity for the treatment of envenomings by Eurasian snakes. Clearly, the rational use of heterologous antivenoms requires establishing their para-specificity landscapes. This paper illustrates the analytical power of combining in vitro and in vivo preclinical quantitative assays toward this goalThis research was partly funded by grant BFU2017-89103-P (Ministerio de Ciencia, Innovación y Universidades, Madrid, Spain), by Vicerrectoría de Investigación, Universidad de Costa Rica (741-A0-804), and by LLC “Innova plus” (Saint-Petersburg, Russia).Peer reviewe

    Study of the Effect of Y2O3 Doping on the Resistance to Radiation Damage of CeO2 Microparticles under Irradiation with Heavy Xe22+ Ions

    No full text
    This paper presents the results of a study on the influence of Y2O3 doping on the resistance to radiation damage and an assessment of structural changes associated with the accumulation of radiation defects in CeO2 microparticles under irradiation with heavy Xe22+ ions. The relevance of this study consists of the prospects for the use of CeO2 microparticles as materials and candidates of inert matrices of nuclear fuel. A method of solid-phase synthesis was applied to obtain microparticles with different concentrations of dopant. It included grinding of CeO2 and Y2O3 microparticles followed by thermal sintering at 1100 °C in an oxygen-containing medium to produce highly ordered microparticles. During the study of the structural characteristics of the synthesized microparticles, it was found that increasing the dopant concentration from 0.05 mol.% to 0.15 mol.% leads to an increase in the crystallinity degree as well as a decrease in dislocation density. According to the results of the assessment of the resistance of microparticles to radiation damage, it was found that an increase in the dopant concentration leads to a decrease in swelling and structural distortion by more than 2.5–3 times, which indicates an increase in the radiation resistance

    Microservices: How to make your application scale

    Get PDF
    The microservice architecture is a style inspired by service-oriented computing that has recently started gaining popularity and that promises to change the way in which software is perceived, conceived and designed. In this paper, we describe the main features of microservices and highlight how these features improve scalability

    Microservices: Yesterday, Today, and Tomorrow

    No full text
    The microservice architecture is a style inspired by service-oriented computing that has recently started gaining popularity. Before presenting the current state-of-the-art in the field, this chapter reviews the history of software architecture, the reasons that led to the diffusion of objects and services first, and microservices later. Finally, open problems and future challenges are introduced. This survey addresses mostly newcomers to the discipline and offers an academic viewpoint on the topic. In addition, practical aspects are investigated and solutions proposed

    Study of the Effect of Y<sub>2</sub>O<sub>3</sub> Doping on the Resistance to Radiation Damage of CeO<sub>2</sub> Microparticles under Irradiation with Heavy Xe<sup>22+</sup> Ions

    No full text
    This paper presents the results of a study on the influence of Y2O3 doping on the resistance to radiation damage and an assessment of structural changes associated with the accumulation of radiation defects in CeO2 microparticles under irradiation with heavy Xe22+ ions. The relevance of this study consists of the prospects for the use of CeO2 microparticles as materials and candidates of inert matrices of nuclear fuel. A method of solid-phase synthesis was applied to obtain microparticles with different concentrations of dopant. It included grinding of CeO2 and Y2O3 microparticles followed by thermal sintering at 1100 °C in an oxygen-containing medium to produce highly ordered microparticles. During the study of the structural characteristics of the synthesized microparticles, it was found that increasing the dopant concentration from 0.05 mol.% to 0.15 mol.% leads to an increase in the crystallinity degree as well as a decrease in dislocation density. According to the results of the assessment of the resistance of microparticles to radiation damage, it was found that an increase in the dopant concentration leads to a decrease in swelling and structural distortion by more than 2.5–3 times, which indicates an increase in the radiation resistance
    corecore